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Abstract.
Let X be the diffusion Markov process on R? with the generator L =
%ijzl a;ij(x)02 . + ZZ 1 bi(x)0,,, and transition density G(t,z,y). Un-

der some CODdlthIlS on the matrix a(z) we get the estimate

SUPo<t<T,z,ycR4 \[% < 4oo forall T > 0.

The latter estimate is used to get the existence and uniqueness of a solution
of the following gas system

9(p) + div(up) = L*(p)

Or(uip) + div(uup) = L*(u;p),

V1<i<d, p(dx,t) — po(dz),u;(z,t)p(dz,t) — v;(x)po(dx)
weakly, as t — 07

S(a,b)

where pg(dr) ( a probability measure on R?), and the bounded vector field

v = (v1,...,99) : RT — R? are given. The family of probability measures
p = p(dx, t) and the velocities u := u(x,t) are unknown. Here L* is the
formal adjoint operator of L.

Résumé

Soit X un processus de Markov & valeurs dans R¢, de générateur L =
%szzl a;j(x)0? ot S bi(2),,, et de densités de probabilités de tran-
sition G(t, z, y)

On obtient, sous certaines conditions sur la matrice a(z), I'estimation
SUPO<t<T z ycRA Vit % < +o0 pour tout 7' > 0. On utilise cette derniere
estimation pour obtenir 'existence et 1'unicité du systeme de gaz S(a,b) ci-

dessus.

Keywords. Transition density, Aronson estimates, Gas system, Propa-
gation of chaos.



1 Introduction and the main results

We suppose that a;;,b; belong to the set C§+°‘(Rd) of bounded functions f
which have two bounded derivatives, and 8§ixj f are Holder continuous with
exponent « € (0,1). The matrix a(x) is symmetric and a(x) > Al4xq, where
A > 0 and ;4 is the d x d identity matrix. The transition density G(¢,x,y)
is the fundamental solution of the parabolic equation

0,G(t,z,y) = LG(t,z,y),t > 0,z € R?

and G(0,z,y) = é(x — y).
Let g(z) be the inverse of the matrix a(x). We set A\, = infje=1(g(2)&, &)
and Ay = supj¢_(9(2)¢, §).

Now we can announce our first result.

Theorem 1.1. 1) If 2\, > A,, then for small 7" > 0 there exists ¢ > 0
such that for all 1 <i <d,

10,,G (¢, 2,y < %G(Qt,x,y) VO<t<T,zycR! (1)

2) If 202 > A2, then (1) works for all 7.
Our second result is the following:

Theorem 1.2. We suppose that po(dz) = po(z)dz, with py € L?*(R?, dx).
Under the latter hypothesis the following assertions hold.

1) The system S(a, b) has a weak solution in the set U, xC'(R4, M(R?)),
of measurable velocity u bounded by ||v|| and (¢ € Ry — p(dz,t)) €
C(Ry, M(RY)). Here M(R?) is the set of probability measures on R<.

2) Under the first hypothesis of Theorem 1.1, the system S(a,b) has a
unique weak solution in the set Uy, x C([0, 77, M(R?)) for a small interval
of time [0, T7).

3) Under the second hypothesis of Theorem 1.1, the system S(a, b) has a
unique weak solution in the set U, x C(Ry, M(R?)).

We refer to [4], [5], [7], [6] and references herein, for links between S(a, b)
and pressureless gas equations.

The plan of the rest of this work is the following. In Section 2 we prove
Theorem 1.1. In Section 3 we construct a weak solution of S(a,b), and
Section 4 we prove the uniqueness.



2 Proof of Theorem 1.1

Before giving the proof we need auxiliary bounds for the transition density
G(t,z,y). In the theory of partial differential equations and stochastic dif-
ferential equations the following estimates

—_ ]2 2
Kot =42 eXp(‘@M) <G(t,x,y) < Kt=4? eXp(_Clw)

are well known. [1], [2], [8], [9], [19]. On the other hand, the following result
was obtained in [17] by using the idea of Fleming’s logarithmic transformation

[3]:

W@m)m ko) exp(—ca(Ols(t0,9)) < Gltzy)  (2)
and
Glt.,y) < m%)mwexp(—q(t)fb(t,x,y» 3)
and for all 1 <1 <d,
0., (Gt )| £ = (B(t ) + 1)1 (4)

where kq, ks > 0 are bounded above and bounded below away from 0 on
bounded intervals (0,7]. Here

ita,) = int {5 [ 37 a6 (65) = el (£(s) = bl(s)) s}

the infimum is taken under p € H*([0,t],R%) such that »(0) =z, ¢(t) = ¥.
See also [20], [13] for the estimate (4).

Proof of Part 1. First we remark that (1) is equivalent to say that for
all T > 0 there exists ¢ > 0 such that forall 1 <i<d,0<t<T, z,y € R?

Gt,z,y) _ c

Or,(IM(G(t,2,y))| m—= < —

00, (n(Gt ) g <
Thanks to (4) a sufficient condition to get the latter estimate is
G(t, z,y)

I(t, z, y)l/2m <c

VO<t<T,z,y € R? (5)

We are going to estimate I,(t, x,y) by Io(t,z,y). We have
9ii(0(8))(@(t) — ble(t))i(@(t) — ble(t)); =
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9ii (0 (1)) @i(t)25(t) — gi((2) )i ()b (0 (1))
+9i5(0(8))bi (0 () )b; (0(1))
From that and from Cauchy Schwarz inequality we have

To(t, 2, y) — ||l VEL 2 (t, 2, y) — Agt]]b]% <

Lt x,y) < Io(t, 2, y) + |[bl VL > (t, 2, y) + Agt][b][%

We see easily that for all § > 0 there exists ¢ > 0 such that a'/? < da + ¢ for
all &« > 0. From that we have for all £ > 0 the existence of ¢ > 0 such that

(1—e)o(t,z,y) —ct < Ly(t,z,y) < (1 +e)lo(t,z,y) + ct

From that and from (2), (3) we have

\/W(;X%Tt)d/g k2(t> eXp(—02 (t>(1 + 6)]0(157 Z, y)) < G(t7 x, y) (6)
and
Gl = W@md/z ki) exp(—ei(D[(1 = e)lo(t.z.p)]))  (7)

On the other hand we have
1
IO(2t7x7y) = §Io(t,$,y) (8)
Now from (8), (6), (7) a sufficient condition to have (5) is

Iy(t 2, y) 2 exp([ea(20)(1 + ) 1o (2, 2. y) — e (D)1 = ) o(t,,y)]) <

for all t < T,z,y € R It is equivalent to say that there exists kr > 0, such
that
[2(2t) — 2¢1(t)] < —kr <0 9)

forall 0 <t <T,x,y € R%
It appears from the proof of Theorem A in [17] that

ci(t) = 6(t) + AgA, ! (10)

and
o(t) = 14 c(||allso, [Gasa,loc) Ay 't (11)



where the term (¢) can be chosen uniformly for ¢t € (0,7] as small as we
want. It follows that (9) is satisfied if and only if

20 A > 1

and for small T, which achieves the proof of Part 1 of Theorem 1.1.

For the proof of Part 2 we use the same proof of the lower bound of
—In(G(t,z,y)) in ([17], Theorem A pages 547-550) and we get an upper
bound of —In(G(t,z,y). The latter upper bound gives a lower bound for
G(t,z,y) similar to (6) with

cot) = Mg, +6(2), (12)

where 6(t) can chosen uniformly for ¢ € (0,7 as small as we want. Using
the new form of ¢y(t) in (9) we get the condition

A A

-1 g

At — QT >0

which achieves the proof of Theorem 1.1.

3 Existence of a weak solution

The construction is nearly the same as in [4]. The main idea is the construc-
tion of the following nonlinear stochastic differential equation:

dX; = (E[v(Xo) | X, ] + b(X0)dt + 0(X,)dBy,  L(Xo) = polda)  (13)

where B; is a standard Brownian motion independent of Xy, and o(x) is
the unique nonnegative square root of a(x). Having a solution (X;) of
(13) we show using Ito’s formula that (p(dz,t) := P(X; € dx),u(z,t) =
E[v(Xo) | X: = 2] : t > 0) is a weak solution of our system S(a,b). In fact
from Ito’s formula the process

f(X4) = f(Xo) —/0 (u(Xs, 8)V(F)(Xs) + L(f)(X))ds (14)

is a martingale for all smooth function f. By operating the expectation on
the latter equality we get the first equation of S(a,b). By multiplying the
equality (14) by v;(Xj), and operating the expectation on each member we
get the equations of S(a,b) for 1 <i <d.

The construction of (13) is based on the conditional propagation of chaos
[21]. The sketch of the proof is the following.

6



Step 1. We consider the system

Z];éz (X]) (Xi’N’n - Xj’an)

dX; " = (XN 1B + ( N r
Z];ﬁzgp (XN _XJN )

+ b(XPN™))dt

(15)
here i = 1,..., N, and (B" : 1 < i < N) are N independent d-dimensional
Brownian motions,

¢"(x) = n'p(nz)
and ¢ is a smooth symmetric probability density on R?. The initial posi-
tions (X¢, ..., X}V) are i.i.d. with probability distribution po, and they are
independent of (B!, ..., BY).
In the first stage we keep n fixed and we let N — 400. We get by the
conditional propagation of chaos already used in [4, 21| a weak solution of
the following non-linear diffusion:

[ o)™ (X — 2)p8(y, 2)dydz
[ (XP — 2)p; ()dz

where pff ; is the probability distribution of (X, X7'), and pf' is the probability
distribution of X}

Step 2. In the second stage we let n — +oo in (16) and we get a weak
solution for (13). The tools of the latter stage are as in [4] and are the
following.

Lemma 3.1. ([18], Lemma 11.4.1)
Let (f,.) be a sequence of non-negative B(R")-measurable functions such
that [ f,(z)dz =1 and

dX}' = o(X]',t)dB; + (

+0(Xy))dt (16)

hmsup/|fn (x 4+ h) — fu(x)|dx = 0.

h—0 p>1

Assume that there is an f € L*(R") such that

[ r@p@ds = v [ gt

for all ¥ € C,(R"). Then f, — f in L'(R").

Lemma 3.2. ([18], Lemma 9.1.15)
Let ¢ be a bounded measurable functions from R? x R, — R? and
dX; = (X, t)dt + 0(X;)dB; a diffusion. Then there is a non-decreasing



function ¢ : (0,400) — (0,+00) depending on d, T, K such that ¢ () — 0
as € — 0 and

T
/‘/@@mmy+m—m@wiwwwﬁé¢ﬂmx

where p(s,z,t,y) are the transition probability density determined by the
diffusion X.

But Lemma 9 in [4] must be replaced by:

Lemma 3.3. ([15], Chapitre 3)

Let us assume aj)(z, 1), a;;(z,t), Veai;(z, t) € L]0, T]xR?). The parabolic
equation

d
du 1 .
=3 Z 8§izj(azju) — div(agu),
ij=1
with initial value uy € L?(R% dz) has a unique solution in L?([0, 7], H').

Here H' = {f,Vf € L*(R*, dz)}. Moreover 4 € L*([0,T], H™*).

That is why we weed the condition py(dx) = po(x)dx with py € L*(RY, dx)
in Theorem 1.2.

4 Uniqueness

4.1 Auxiliary results

We give first some estimates which will be carried through the sequel to get
the uniqueness.

Proposition 4.1. Suppose that for all 0 < t < T there exists ¢ > 0 such
that
V.Gt x,y)| < ct72G(2t 2, y) (17)

for all z,y € R%.
Let B be a bounded measurable function from R¢ to R?, and t — p; a
family of probability measures on R¢ which is a weak solution of the system

[ o) - [ 50.00m(ds) -

/Ot / [B(z,s)V f(z) + Lf(z) + 0, f (s, x)|ps(dz)ds

for all t >0, f € CP'(R? x Ry).



Then for any ¢ > 0, p;(dx) has a density p;(z) with respect to Lebesgue
measure, which satisfies for all s,t < T,

[lo(@) e < c(t™%2 +1) (E1)

() = pe(y)] < c((t A s)™ D24 Do —yV2 ()
[pe(2) = ps(@)] < e((tAs)™ V24 1)t — 5|V ()
where ¢ is some constant which depends on d, ||B||, T

Before giving the proof we recall certain results concerning upper bounds
for G(t,z,y) and its derivatives. [10], [11], [12] see also ([16], Proposition 2).

We recall that
d d

> (@), + > bi()d,,

ij=1 i=1
and the coefficients a,b € CZ™*(R?).

I —

DN | —

Proposition 4.2.
1) For any T > 0 there exist some constants ¢y, cs > 0 such that

d d
£y 102, Gt xy)| + 172 10,G(t,z,y)l

ij=1 i=1

2=l
2t
2) The functions d,, G(t, z,y), 8%ij (t,x,y) exist and are continuous func-
tions of (¢,z,y) in (0,4+00) x R? x R% Moreover for all T > 0 there exist
¢y, ¢ > 0 such that

+G(t,z,y) < et exp(—cy

|z — y|?

d d
t Z \Biiij(t,x, y)| + /2 Z 10,,G(t, 2, y)| < c1t™* exp(—cy 5

ij=1 i=1

).

Now we come back to the proof of Proposition 4.1.

Proof. We follow the proof in ([14], proposition 3.4.). Let G(t,z,y) be
the transition density of L. For any v € L'(R%),t € (0,T] and h > 0 the
function

(es) = A6+ = s.z9)dy
is in CPH(R? x [0,]). It satisfies
asf}/h(xa 8) + L’Yh(x7 3) =0
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and therefore

[t 00t~ [ 0mtan) = [ [ Bla.s)ontr.shptaaris

(18)
The equality (18) applied for |y| and the upper bounds on G imply

| / (e, Opr(de)] < / / I ()|G(h, 2, y)dypu(dz)
< / / (I G (t+h, g, 2)dypo(dr)+e / / / I ()IVaG(t+h—s, 7, y)|dyps(dx)ds
< [ [ Hl e osp(eay (o) +
¢ / / / @)IVaG(t + b — 5.y, 2)|dyps(dz)ds

< C[(t+h)_d/2|7|1+/0 /(t+h—3)_1/26'(2(t+h—8),y,x)l’y(y)ldyps(dfv)dS]
(19)

thanks to upper bound of VG(t,z,y) and (17).
In the other way from upper bounds of G we have the following estimate

| Jtrn=97 2600+ b= )l )l dn)as <

¢ / t / (t+ = 8) Y20+ h— 5) 2|y (y) dypa(da)ds

t
< dhh / (E+ b — 5y @025 < clyly D2 4 54 In(h)]
0

where 6/ = 1if i = j and 0 if not. In a first step we get for all t € (0,7],h €
(0,1),

| / / V()G (h, y, 2)dypi(de)| < elyly[(E+h)~Y2 + h=@D/2 4 61 n(h)] + 1.

(20)
Inserting the latter estimate in (19) we obtain

[ [ )Gy o)dyoas) <

10



ey [(t+ h)~Y? + /Ot(t +h—8) Y2 ((s+2(t+h—s)) ¥+

(t+h—s) @ V2 L5t +h—s)|+1)ds] <
ey [(t + R) Y2 + D2 L 52| In(R)| + 1].

The exponent of 1/h is (d —2)/2 is less than the exponent of 1/h in the first
estimate (20). We continue by inserting (20) in (19) as in [14] (Proposition
3.4.) until the d-th step. Finally we get

/ [ / ()| G,z y)dylpr(de) < et + D),

uniformly in h, which implies that
I [ Gt o)l < el 1)

uniformly in h. Since [ G(h,z,y)p(dy,t) — p(dz,t) weakly as h — 0+, we
obtain for all any open set G C R¢ with finite Lebesgue measure |G|

(o). 16) <l int ( [ Gl .l dy). 1)

zlimgnfo(pt(d:p),/ Glh,y,)dy) < et +1)|G).
- D

The proof of the fact that the density pi(x) of p;(dz) satisfies, for all
t e (0,77,
100 oo < e(t™2 + 1)

is the same as in [14]. For the sake of completeness we recall it. For ¢ > 0
let
B.i={x: pi(x) > c(t™? + 1) (1 +¢)).

If |B.4| > 0, then there exists an open set A such that
B., C A, |A\ B.:| <|Ale/2.
The inequality
Al + 1) < |Ale(tY? + 1)(1 4+ ¢)(1 — /2)
= c(t™? + 1)1+ &)(|A| — |Ale/2)e(t™* + 1)(1 + €) (JA| — |Ale/2)

< et + 1)1 +)(JA] = |A\ Bey)

11



= c(t™? + 1)(1 + €)|B.|

S/ pi(x)dr < / p(x)dx < |Ale(t™¥? +1)
Beyt A

proves that
pu(x) < et 4+ 1),

which achieves the proof of (Ej).
Now we prove the estimate (F,). Let p = t/2,y,9' € R? with § =
ly —y'| <1At. We have from (18)

|//0t G(h,z,y)dx — /pt(x)G(hvx7y/)dx|2 =
| /pp(x)[G(t —p+h,x,y)— Gt —p+ h,x,y)]de+

t
[ [ o) B 9G4 = 5..9) = DGl 4 sy s

p

<3 /,op(a?)[G(t ot hay) — Gt —p+ b,y da+
t—o
3\/ /pS B(z,8)[V,G(t+h —s,2,y) — V,G(t + h — s,2,y)|dvds|*+

3\/ /ps (z,8)[V.G(t+h —s,z,y) — V.Gt + h — s,2,y)]drds|*.
t—5

From the upper bound of V,G(t, z,y) we derive

| / po(@)[G(t — p+ hyz,y) — Gt — p+ h,,y)]da

<ly= | [ mla)lVGlt =+ b 2)lde <y~ gl

From the upper bound of Q,%iij(t,x,y) and the estimate ||ps|loc < (1 +
t=42) < (1 +t=@H/2) for all s € (p,t) and for all ¢ € (0, T], we have

t—5
/ /ps (,8) V.Gt +h—s,2,y) — V.Gt +h —s,x,y")|deds <

t—o
cly — y/|(1 + ¢~ (*T0/2) / /(t —8) s
P

12



< cly = yJ 1+t ()] + 1]

It remains the term

\/ /ps (,8)[V.G(t +h—s,2,y) — V.Gt + h — s,x,y")|deds| <
t—5

c/ (t+h—s)"V2Q 4+t ds < c(1 4 t~Y?)5'/2
-5

thanks to the upper bound of 9,,G(t, z,y). Finally we get
| [ @Gt~ [ p(@)G(h )i

< clly =y P(1 + | I(8)?) + 8](¢~“@HD/2 4 1)2
<cly =y 2 4 1)?

because |y —y'| < 1.

This estimate holds for any fixed ¢ € (0,7 uniformly in A > 0, and
therefore is valid for the weak limit of the function y — [ py(x)G(h,y, z)dz,
as h — 0, namely

10:(y) — pe(y)| < cly — o [V2(¢~@TD/2 4 1)

for [y —y'| < 1. As |pi(y) = pe(y)| < c(1+17@FV/2) for all y, ¢/, then we can
derive that
10e(y) — pe(¥)| < cly — o [V2(¢~@TD/2 4 1)

for all y, /.
We still have to establish (FE3). For 0 < s < t,h = [t — s|*° we obtain

m@—m@nsm@—/ﬁ@wmmwmw

\/m G (h . y)dz| +
| [10.@) = pu0))Ghow)ds| < 1+ L+ I
The term
I — \/m wxyﬂﬂ<c/w £ PG (h, x, y)da(t V2 1)

1 |z —y|”
C/ ly — x\l/zm eXp(—C2T)d$( (D72 1 1)

13



C(t_(d+1)/2 + 1)h1/4.

Similarly
I3 < c(s™@ED/2 L )pl/A,

Furthermore

I = \/pt |G(h, z,y)dx| = ]//pr B(z,r)V.G(h,z,y)+

LG(h,x,y)|dxdr|
<clt—s|(sT2+ DA V24 AT <t = s]MP(s7Y? 1)

4.2 Proof of uniqueness

We are going to give the uniqueness in any mterval [0,7]. The proof is
similar to the uniqueness in [4]. Let X; = Xo+ [J (E[o(Xo) | X, ] +b(X,))ds+

fot 0(Xs)B: be a weak solution. We have already shown in Section 3 that
(p(z,t)dx = P(X; € dx), u(z,t) = E[o(Xo) | X = z])

is a weak solution of S(a,b). It is easy to show that

gi(z,t) = ui(z, t)p(x, 1) = /vi(y)p(O, y,t,x)po(dy), (21)
where p(0,y,t,x) is the fundamental solution of
9(p) + div(pu) = L*(p).

Let qO(x7t) = QO(%ta +> = (JO(%ta _) = p<x7t)7

qi(xat7 +) = Uj(y)p(()?y?tax)pO(dy)?

and
gi(x,t,—) = /v{(y)p(oayiw)ﬂo(dy)w <i<d,

where 1, 2~ denote respectively the positive and the negative parts of the
real number x.
Let € = +,—, and = = [v5(y)po(dy). We can show that for each couple

(i), (t — cSqi(x,t,€) == m(z,t)) is a family of probability density on R?
which is a weak solution of the parabolic equation

0y(m) + div(mB) = L*(m),

14



where

B(l’,t) = ﬁ(QI(mvt% "‘7Qd(x7t))'

qo0 (ZE, t
It follows from Subsection 4.1 that there exists a constant ¢ which depends
only on ||v||e and d such that for each i =0, ...,d,e = 4, —

it €)llse < c(t™2 + 1),

qi(y,t,e) — q:(y, t,e)| < et 2 4+ 1)y — /)2,

‘%(y? tv E) - (.Z’L(y7 S, E)‘ S C<min(t7 8)_(d+1)/2 + 1)|t - S|1/5‘
It also follows that
q= (QO(x> t)v QI(x> ta +)7 QI(x> t_)7 SEED) Qd(x> ta +)7 qd(x> ta _)) =
(gi(e):0<i<de=+,-)
is a weak solution of the following 2d + 1-dimensional parabolic system

9:(qi(e)) + div(qi(e) F'(q)) = L*(qi(¢)),
Vo<i<d, e=+,—,

P(2d+1) qi(e,dx,t) — q;(e,dz,0)
weakly, as t — 0.
where .
F(q) = %(Ch(-i‘) —q1(=), -y qa(+) — qa(—)).

We point out that each ¢ — ¢;(¢)F(q) is Lipshitz continuous on the domain
D ={ge Ry x R*: |g;(+)] < [[vl|octo; [0:(—)] < [[0]locgo, V1 < i < d}.

In the sequel we denote |g| == g0 + 320, |@:(+)] + |@(—)| the norm of the
vector ¢ in Ry x R%,

Now we are ready to prove the uniqueness by mimicking the method
of Oelschldger ([14], Proposition 3.5). Let us consider two weak solutions
(1,0 < i < d),(¢?,0 < i < d) of S(a,b) with the same initial conditions
(po(dx), qo(dz)). We are going to show that

a(z,t) = q¢(x, 1), ¢} (x, t,+) = ¢z, t,4), ¢ (x,t,—) = ¢ (z,t,—) V1 <i < d.

From the system P(2d + 1) we have for all f € C2'(R® x [0, T7]), and for
i=0,...d j=1,2

/ Fa, 1) (2,1, +)d — / £, 0)¢! (dr, 0) =

15



/ / N f(z,s) + Lf(x,s)+ 0sf(x,5)|q] (x, s, +)dwds (22)

For any h > 0 the function vip—s(x) :== [ Gt +h — s,2,y)y(y)dy is in
CPHR? x [0,1]) for all v € L'(R%). Therefore (22), and

0,G(s,y,x) — LG(s,y,z) = 0,0on R* x (0, +00), (23)

yields
g} (y. t.+) — @ (y, t,+)| =

|//‘ Gt =5, 2,9)a (2, 5,4+)—

F(q*(2,5))V:G(t = 5,2,y)q] (2, 5, +)]d=ds].

Now we multiply both sides of this equation with the function G(h,y,z), h >
0 and we integrate them. From this and from (23) we get the inequality

/Ot//IF(ql(% $))a; (2, 8,4) — F(¢*(2,9))q] (2,5, +)]

|\V.G(t — s,2,9)|G(h,y, x)dzdyds

<c/ //‘q 2,8) — (2, 8)|(t — s)7V/?

2(t — s),2,y)G(h,y, x)dzdyds.
Noting that
/Gwawﬂ&%@@ZG@+&%@

It follows that

C/O / ¢4 (2, 5) — (2, 9)|(t — s)Y2G(2(t — 5) + h, 2, 2)dzds,

where ¢ is some constant which depends on d, ||v||s, 7. The same estimates
show that for all 0 <4 <d

/\qz y.t,—) — q;(y, t, =)|G(h,y, x)dy <

16



t
o[ [0 = el =) G -9 + bz adsds
0
We derive that
14" (y,t) — ¢*(y, 1)|G(h, y, x)dy <
t
¢ [ 108 = )l )60 ) + s,
0

this means with

Q(h,t, x) Z/\ql(y,t)—q2(y,t)|G(h,y,:v)dy,
that .
Qlht.2) < c /O (t— ) 2Q(2(t — 5) + h, s, 2)ds. (24)

Now the proof goes as in ([14] page 305). For the sake of completeness
we recall it. From the estimate G(h,y,z) < ;7 we get a first estimate

Q(h,t,x) < ch™?2 (25)

Inserted into (24) gives uniformly in ¢t € (0,7],z € R®
t
Qita) < ¢ [ (= sy 22t - )+ 1) s
0

< (b2 £ 52 n(h)| + 1). (26)

The latter estimate is an improvement of (25) and if we insert this improve-
ment into (24) we obtain uniformly in ¢ € (0,7], 2z € R?

Q(h,t,2) < c(h==2/2 1 52| In(h)| + 1).
Continuing in this way we finally obtain uniformly in ¢ € (0,7],z € R?
Q(h,t,x) <c
Since G(h,y,x) — 0,(z) as h — 0+, then
Q(h,t,z) — lg'(z,t) — ¢*(x,t)|
this yields

sup ¢ (z,1) — ¢*(z,1)| < c. (27)
z€R4te(0,T]

17



Now recall that for each i,

4} (y, t,+) — ¢ (y, t,+)| =

| / 1@ @ )9.6( - 0004 (w5, 4)-

F(q*(w,8))VaG(t = 5,2, y)q} (2, 5, +)]dxds]

t
<o / sup g (2, 8) — (=, 9)|(t — 5)"V/2ds
0

2€R%,s<T

<c sup g'(z8) — (2, 8)|VT

z€R4A,s<T
uniformly in ¢ € (0,7],y,7 < T, and therefore

sup [q'(2,8) — ¢*(2,8)| < e sup |q' (2, 5) — (2, 8)[V/T

2€R%,s<T 2,8<T

For 7 < 1/c? this yields by (27)

sup g (2,5) — (2 5)] = 0

ze€R4 s<T

Iterating of the above argument in [7,27], etc. provides the desired result,
namely

sup |q'(2,5) = ¢*(2,8)| = 0

2€R4,s<T
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