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Abstract.

Let X be the diffusion Markov process on Rd with the generator L =
1
2

∑d
i,j=1 aij(x)∂

2
xixj

+
∑d

i=1 bi(x)∂xi
, and transition density G(t, x, y). Un-

der some conditions on the matrix a(x) we get the estimate

sup0<t<T,x,y∈Rd

√
t |∇xG(t,x,y)|

G(2t,x,y)
< +∞ for all T > 0.

The latter estimate is used to get the existence and uniqueness of a solution
of the following gas system

S(a, b)















∂t(ρ) + div(uρ) = L∗(ρ)
∂t(uiρ) + div(uiuρ) = L∗(uiρ),
∀ 1 ≤ i ≤ d, ρ(dx, t) → ρ0(dx), ui(x, t)ρ(dx, t) → vi(x)ρ0(dx)
weakly, as t→ 0+

where ρ0(dx) ( a probability measure on Rd), and the bounded vector field
v := (v1, ..., vd) : Rd → Rd are given. The family of probability measures
ρ := ρ(dx, t) and the velocities u := u(x, t) are unknown. Here L∗ is the
formal adjoint operator of L.

Résumé

Soit X un processus de Markov à valeurs dans Rd, de générateur L =
1
2

∑d
i,j=1 aij(x)∂

2
xixj

+
∑d

i=1 bi(x)∂xi
, et de densités de probabilités de tran-

sition G(t, x, y).
On obtient, sous certaines conditions sur la matrice a(x), l’estimation

sup0<t<T,x,y∈Rd

√
t |∇xG(t,x,y)|

G(2t,x,y)
< +∞ pour tout T > 0. On utilise cette dernière

estimation pour obtenir l’existence et l’unicité du système de gaz S(a, b) ci-
dessus.

Keywords. Transition density, Aronson estimates, Gas system, Propa-
gation of chaos.
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1 Introduction and the main results

We suppose that aij, bi belong to the set C2+α
b (Rd) of bounded functions f

which have two bounded derivatives, and ∂2
xixj

f are Hölder continuous with
exponent α ∈ (0, 1). The matrix a(x) is symmetric and a(x) ≥ λId×d, where
λ > 0 and Id×d is the d× d identity matrix. The transition density G(t, x, y)
is the fundamental solution of the parabolic equation

∂tG(t, x, y) = LG(t, x, y), t > 0, x ∈ Rd

and G(0, x, y) = δ(x− y).
Let g(x) be the inverse of the matrix a(x). We set λg = inf |ξ|=1〈g(x)ξ, ξ〉

and Λg = sup|ξ|=1〈g(x)ξ, ξ〉.
Now we can announce our first result.

Theorem 1.1. 1) If 2λg > Λg, then for small T > 0 there exists c > 0
such that for all 1 ≤ i ≤ d,

|∂xi
G(t, x, y)| ≤ c√

t
G(2t, x, y) ∀ 0 < t ≤ T, x, y ∈ Rd (1)

2) If 2λ2
g > Λ2

g, then (1) works for all T .

Our second result is the following:

Theorem 1.2. We suppose that ρ0(dx) = ρ0(x)dx, with ρ0 ∈ L2(Rd, dx).
Under the latter hypothesis the following assertions hold.

1) The system S(a, b) has a weak solution in the set U||v||∞×C(R+,M(Rd)),
of measurable velocity u bounded by ||v||∞ and (t ∈ R+ → ρ(dx, t)) ∈
C(R+,M(Rd)). Here M(Rd) is the set of probability measures on Rd.

2) Under the first hypothesis of Theorem 1.1, the system S(a, b) has a
unique weak solution in the set U||v||∞ ×C([0, T ],M(Rd)) for a small interval
of time [0, T ].

3) Under the second hypothesis of Theorem 1.1, the system S(a, b) has a
unique weak solution in the set U||v||∞ × C(R+,M(Rd)).

We refer to [4], [5], [7], [6] and references herein, for links between S(a, b)
and pressureless gas equations.

The plan of the rest of this work is the following. In Section 2 we prove
Theorem 1.1. In Section 3 we construct a weak solution of S(a, b), and
Section 4 we prove the uniqueness.
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2 Proof of Theorem 1.1

Before giving the proof we need auxiliary bounds for the transition density
G(t, x, y). In the theory of partial differential equations and stochastic dif-
ferential equations the following estimates

K2t
−d/2 exp(−c2

|x− y|2
t

) ≤ G(t, x, y) ≤ K1t
−d/2 exp(−c1

|x− y|2
t

)

are well known. [1], [2], [8], [9], [19]. On the other hand, the following result
was obtained in [17] by using the idea of Fleming’s logarithmic transformation
[3]:

1
√

deta(y)(2tπ)d/2
k2(t) exp(−c2(t)Ib(t, x, y)) ≤ G(t, x, y) (2)

and

G(t, x, y) ≤ 1
√

deta(y)(2tπ)d/2
k1(t) exp(−c1(t)Ib(t, x, y)) (3)

and for all 1 ≤ i ≤ d,

|∂xi
ln(G(t, x, y))| ≤ c√

t
(Ib(t, x, y) + 1)1/2 (4)

where k1, k2 > 0 are bounded above and bounded below away from 0 on
bounded intervals (0, T ]. Here

Ib(t, x, y) = inf{1

2

∫ t

0

∑

i,j

gij(ϕ(s))(ϕ̇(s) − b(ϕ(s))i(ϕ̇(s) − b(ϕ(s))jds}

the infimum is taken under ϕ ∈ H1([0, t],Rd) such that ϕ(0) = x, ϕ(t) = y.
See also [20], [13] for the estimate (4).

Proof of Part 1. First we remark that (1) is equivalent to say that for
all T > 0 there exists c > 0 such that for all 1 ≤ i ≤ d, 0 < t ≤ T, x, y ∈ Rd

|∂xi
(ln(G(t, x, y))| G(t, x, y)

G(2t, x, y)
≤ c√

t

Thanks to (4) a sufficient condition to get the latter estimate is

Ib(t, x, y)
1/2 G(t, x, y)

G(2t, x, y)
≤ c ∀ 0 < t ≤ T, x, y ∈ Rd (5)

We are going to estimate Ib(t, x, y) by I0(t, x, y). We have

gij(ϕ(t))(ϕ̇(t) − b(ϕ(t))i(ϕ̇(t) − b(ϕ(t))j =
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gij(ϕ(t))ϕ̇i(t)ϕ̇j(t) − gij(ϕ(t))ϕ̇i(t)bj(ϕ(t))

+gij(ϕ(t))bi(ϕ(t))bj(ϕ(t))

From that and from Cauchy Schwarz inequality we have

I0(t, x, y) − ||b||∞
√
tI

1/2
0 (t, x, y) − Λgt||b||2∞ ≤

Ib(t, x, y) ≤ I0(t, x, y) + ||b||∞
√
tI

1/2
0 (t, x, y) + Λgt||b||2∞

We see easily that for all δ > 0 there exists c > 0 such that α1/2 ≤ δα+ c for
all α > 0. From that we have for all ε > 0 the existence of c > 0 such that

(1 − ε)I0(t, x, y) − ct ≤ Ib(t, x, y) ≤ (1 + ε)I0(t, x, y) + ct

From that and from (2), (3) we have

1
√

deta(y)(2πt)d/2
k2(t) exp(−c2(t)(1 + ε)I0(t, x, y)) ≤ G(t, x, y) (6)

and

G(t, x, y) ≤ 1
√

deta(y)(2πt)d/2
k1(t) exp(−c1(t)[(1 − ε)I0(t, x, y)]) (7)

On the other hand we have

I0(2t, x, y) =
1

2
I0(t, x, y) (8)

Now from (8), (6), (7) a sufficient condition to have (5) is

Ib(t, x, y)
1/2 exp([c2(2t)(1 + ε)I0(2t, x, y) − c1(t)(1 − ε)I0(t, x, y)]) < c

for all t < T, x, y ∈ Rd. It is equivalent to say that there exists kT > 0, such
that

[c2(2t) − 2c1(t)] < −kT < 0 (9)

for all 0 < t ≤ T, x, y ∈ Rd.
It appears from the proof of Theorem A in [17] that

c1(t) = δ(t) + λgΛ
−1
g (10)

and
c2(t) = 1 + c(||a||∞, |gxixj

|∞)λ−1
g t (11)
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where the term δ(t) can be chosen uniformly for t ∈ (0, T ] as small as we
want. It follows that (9) is satisfied if and only if

2λgΛ
−1
g > 1

and for small T , which achieves the proof of Part 1 of Theorem 1.1.
For the proof of Part 2 we use the same proof of the lower bound of

− ln(G(t, x, y)) in ([17], Theorem A pages 547-550) and we get an upper
bound of − ln(G(t, x, y). The latter upper bound gives a lower bound for
G(t, x, y) similar to (6) with

c2(t) = Λgλ
−1
g + δ(t), (12)

where δ(t) can chosen uniformly for t ∈ (0, T ] as small as we want. Using
the new form of c2(t) in (9) we get the condition

λgΛ
−1
g −

λ−1
g Λg

2
> 0

which achieves the proof of Theorem 1.1.

3 Existence of a weak solution

The construction is nearly the same as in [4]. The main idea is the construc-
tion of the following nonlinear stochastic differential equation:

dXt = (E[ v(X0) |Xt ] + b(Xt))dt+ σ(Xt)dBt, L(X0) = ρ0(dx) (13)

where Bt is a standard Brownian motion independent of X0, and σ(x) is
the unique nonnegative square root of a(x). Having a solution (Xt) of
(13) we show using Itô’s formula that (ρ(dx, t) := P (Xt ∈ dx), u(x, t) =
E[v(X0) |Xt = x] : t ≥ 0) is a weak solution of our system S(a, b). In fact
from Itô’s formula the process

f(Xt) − f(X0) −
∫ t

0

(u(Xs, s)∇(f)(Xs) + L(f)(Xs))ds (14)

is a martingale for all smooth function f . By operating the expectation on
the latter equality we get the first equation of S(a, b). By multiplying the
equality (14) by vi(X0), and operating the expectation on each member we
get the equations of S(a, b) for 1 ≤ i ≤ d.

The construction of (13) is based on the conditional propagation of chaos
[21]. The sketch of the proof is the following.
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Step 1. We consider the system

dX i,N,n
t = σ(X i,N,n

t , t)dBi
t + (

∑

j 6=i v(X
j
0)ϕ

n(X i,N,n
t −Xj,N,n

t )
∑

j 6=i ϕ
n(X i,N,n

t −Xj,N,n
t )

+ b(X i,N,n
t ))dt

(15)
here i = 1, ..., N , and (Bi : 1 ≤ i ≤ N) are N independent d-dimensional
Brownian motions,

ϕn(x) = ndϕ(nx)

and ϕ is a smooth symmetric probability density on Rd. The initial posi-
tions (X1

0 , ..., X
N
0 ) are i.i.d. with probability distribution ρ0, and they are

independent of (B1, ..., BN).
In the first stage we keep n fixed and we let N → +∞. We get by the

conditional propagation of chaos already used in [4, 21] a weak solution of
the following non-linear diffusion:

dXn
t = σ(Xn

t , t)dBt + (

∫ ∫

v(y)ϕn(Xn
t − z)ρn

0,t(y, z)dydz
∫

ϕn(Xn
t − z)ρn

t (z)dz
+ b(Xt))dt (16)

where ρn
0,t is the probability distribution of (X0, X

n
t ), and ρn

t is the probability
distribution of Xn

t .
Step 2. In the second stage we let n → +∞ in (16) and we get a weak

solution for (13). The tools of the latter stage are as in [4] and are the
following.

Lemma 3.1. ([18], Lemma 11.4.1)
Let (fn) be a sequence of non-negative B(Rr)-measurable functions such

that
∫

fn(x)dx = 1 and

lim
h→0

sup
n≥1

∫

|fn(x+ h) − fn(x)|dx = 0.

Assume that there is an f ∈ L1(Rr) such that

∫

f(x)ψ(x)dx = lim
n→+∞

∫

fn(x)ψ(x)dx

for all ψ ∈ Cb(R
r). Then fn → f in L1(Rr).

Lemma 3.2. ([18], Lemma 9.1.15)
Let c be a bounded measurable functions from Rd × R+ → Rd, and

dXt = c(Xt, t)dt + σ(Xt)dBt a diffusion. Then there is a non-decreasing
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function ψ : (0,+∞) → (0,+∞) depending on d, T,K such that ψ(ε) → 0
as ε→ 0 and

∫ T

s

∫

|p(s, x, t, y + h) − p(s, x, t, y)|dydt ≤ ψ(|h|),

where p(s, x, t, y) are the transition probability density determined by the
diffusion X.

But Lemma 9 in [4] must be replaced by:
Lemma 3.3. ([15], Chapitre 3)
Let us assume ai

0(x, t), aij(x, t),∇xaij(x, t) ∈ L∞([0, T ]×Rd). The parabolic
equation

du

dt
=

1

2

d
∑

i,j=1

∂2
xixj(aiju) − div(a0u),

with initial value u0 ∈ L2(Rd, dx) has a unique solution in L2([0, T ], H1).
Here H1 = {f,∇f ∈ L2(Rd, dx)}. Moreover du

dt
∈ L2([0, T ], H−1).

That is why we weed the condition ρ0(dx) = ρ0(x)dx with ρ0 ∈ L2(Rd, dx)
in Theorem 1.2.

4 Uniqueness

4.1 Auxiliary results

We give first some estimates which will be carried through the sequel to get
the uniqueness.

Proposition 4.1. Suppose that for all 0 < t < T there exists c > 0 such
that

|∇xG(t, x, y)| ≤ ct−1/2G(2t, x, y) (17)

for all x, y ∈ Rd.
Let B be a bounded measurable function from Rd to Rd, and t → ρt a

family of probability measures on Rd which is a weak solution of the system

∫

f(t, x)ρt(dx) −
∫

f(0, x)ρ0(dx) =

∫ t

0

∫

[B(x, s)∇f(x) + Lf(x) + ∂sf(s, x)]ρs(dx)ds

for all t ≥ 0, f ∈ C2,1
b (Rd × R+).
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Then for any t > 0, ρt(dx) has a density ρt(x) with respect to Lebesgue
measure, which satisfies for all s, t ≤ T ,

||ρt(x)||∞ ≤ c(t−d/2 + 1) (E1)

|ρt(x) − ρt(y)| ≤ c((t ∧ s)−(d+1)/2 + 1)|x− y|1/2 (E2)

|ρt(x) − ρs(x)| ≤ c((t ∧ s)−(d+1)/2 + 1)|t− s|1/5 (E3)

where c is some constant which depends on d, ||B||∞, T .

Before giving the proof we recall certain results concerning upper bounds
for G(t, x, y) and its derivatives. [10], [11], [12] see also ([16], Proposition 2).
We recall that

L =
1

2

d
∑

i,j=1

aij(x)∂
2
xixj

+

d
∑

i=1

bi(x)∂xi

and the coefficients a, b ∈ C2+α
b (Rd).

Proposition 4.2.

1) For any T > 0 there exist some constants c1, c2 > 0 such that

t

d
∑

i,j=1

|∂2
xixj

G(t, x, y)| + t1/2
d

∑

i=1

|∂xi
G(t, x, y)|

+G(t, x, y) ≤ c1t
−d/2 exp(−c2

|x− y|2
2t

)

2) The functions ∂yj
G(t, x, y), ∂2

xiyj
G(t, x, y) exist and are continuous func-

tions of (t, x, y) in (0,+∞) × Rd × Rd. Moreover for all T > 0 there exist
c1, c2 > 0 such that

t
d

∑

i,j=1

|∂2
xiyj

G(t, x, y)| + t1/2
d

∑

i=1

|∂yi
G(t, x, y)| ≤ c1t

−d/2 exp(−c2
|x− y|2

2t
).

Now we come back to the proof of Proposition 4.1.
Proof. We follow the proof in ([14], proposition 3.4.). Let G(t, x, y) be

the transition density of L. For any γ ∈ L1(Rd), t ∈ (0, T ] and h > 0 the
function

γh(x, s) :=

∫

γ(y)G(t+ h− s, x, y)dy

is in C2,1
b (Rd × [0, t]). It satisfies

∂sγh(x, s) + Lγh(x, s) = 0
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and therefore

∫

γh(x, t))ρt(dx) −
∫

γh(x, 0))ρ0(dx) =

∫ t

0

∫

B(x, s)∇γh(x, s)ρs(dx)ds

(18)
The equality (18) applied for |γ| and the upper bounds on G imply

|
∫

γh(x, t)ρt(dx)| ≤
∫ ∫

|γ(y)|G(h, x, y)dyρt(dx)

≤
∫ ∫

|γ(y)|G(t+h, y, x)dyρ0(dx)+c

∫ t

0

∫ ∫

|γ(y)||∇xG(t+h−s, x, y)|dyρs(dx)ds

≤ c

∫ ∫

|γ(y)| 1

(t+ h)d/2
exp(−c2

|x− y|2
2(t+ h)

)dyρ0(dx)+

c

∫ t

0

∫ ∫

|γ(y)||∇xG(t+ h− s, y, x)|dyρs(dx)ds

≤ c[(t+h)−d/2|γ|1 +

∫ t

0

∫

(t+h−s)−1/2G(2(t+h−s), y, x)|γ(y)|dyρs(dx)ds]

(19)
thanks to upper bound of ∇G(t, x, y) and (17).

In the other way from upper bounds of G we have the following estimate

∫ t

0

∫

(t+ h− s)−1/2G(2(t+ h− s), y, x)|γ(y)|dyρs(dx)ds ≤

c

∫ t

0

∫

(t+ h− s)−1/2(t+ h− s)−d/2|γ(y)|dyρs(dx)ds

≤ c|γ|1
∫ t

0

(t + h− s)−(d+1)/2ds ≤ c|γ|1[h−(d−1)/2 + δ1
d| ln(h)|]

where δj
i = 1 if i = j and 0 if not. In a first step we get for all t ∈ (0, T ], h ∈

(0, 1),

|
∫ ∫

γ(y)G(h, y, x)dyρt(dx)| ≤ c|γ|1[(t+ h)−d/2 + h−(d−1)/2 + δ1
d| ln(h)|+ 1].

(20)
Inserting the latter estimate in (19) we obtain

∫ ∫

|γ(y)|G(h, y, x)dyρt(dx) ≤
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c|γ|1[(t+ h)−d/2 +

∫ t

0

(t+ h− s)−1/2((s+ 2(t+ h− s))−d/2+

(t+ h− s)−(d−1)/2 + δ1
d| ln(t+ h− s)| + 1)ds] ≤

c|γ|1[(t + h)−d/2 + h−(d−2)/2 + δ2
d| ln(h)| + 1].

The exponent of 1/h is (d− 2)/2 is less than the exponent of 1/h in the first
estimate (20). We continue by inserting (20) in (19) as in [14] (Proposition
3.4.) until the d-th step. Finally we get

∫

[

∫

|γ(y)|G(h, x, y)dy]ρt(dx) ≤ c(t−d/2 + 1)|γ|1

uniformly in h, which implies that

||
∫

G(h, x, ·)ρt(dx)||∞ ≤ c(t−d/2 + 1)

uniformly in h. Since
∫

G(h, x, y)ρ(dy, t) → ρ(dx, t) weakly as h → 0+, we
obtain for all any open set G ⊂ Rd with finite Lebesgue measure |G|

(ρt(dx), 1G) ≤ lim inf
h→0

(

∫

G(h, y, ·)ρt(dy), 1G)

= lim inf
h→0

(ρt(dx),

∫

D

G(h, y, ·)dy) ≤ c(t−d/2 + 1)|G|.

The proof of the fact that the density ρt(x) of ρt(dx) satisfies, for all
t ∈ (0, T ],

||ρt(·)||∞ ≤ c(t−d/2 + 1)

is the same as in [14]. For the sake of completeness we recall it. For ε > 0
let

Bε,t = {x : ρt(x) > c(t−d/2 + 1)(1 + ε)}.
If |Bε,t| > 0, then there exists an open set A such that

Bε,t ⊂ A, |A \Bε,t| ≤ |A|ε/2.

The inequality

|A|c(t−d/2 + 1) < |A|c(t−d/2 + 1)(1 + ε)(1 − ε/2)

= c(t−d/2 + 1)(1 + ε)(|A| − |A|ε/2)c(t−d/2 + 1)(1 + ε)(|A| − |A|ε/2)

≤ c(t−d/2 + 1)(1 + ε)(|A| − |A \Bε,t|)

11



= c(t−d/2 + 1)(1 + ε)|Bε,t|

≤
∫

Bε,t

ρt(x)dx ≤
∫

A

ρt(x)dx ≤ |A|c(t−d/2 + 1)

proves that
ρt(x) ≤ c(t−d/2 + 1),

which achieves the proof of (E1).
Now we prove the estimate (E2). Let p = t/2, y, y′ ∈ Rd with δ =

|y − y′| < 1 ∧ t. We have from (18)

|
∫

ρt(x)G(h, x, y)dx−
∫

ρt(x)G(h, x, y′)dx|2 =

|
∫

ρp(x)[G(t− p + h, x, y) −G(t− p+ h, x, y′)]dx+

∫ t

p

∫

ρs(x)B(x, s)[∇xG(t+ h− s, x, y) −∇xG(t+ h− s, x, y′)]dxds|2

≤ 3|
∫

ρp(x)[G(t− p+ h, x, y) −G(t− p+ h, x, y′)]dx|2+

3|
∫ t−δ

p

∫

ρs(x)B(x, s)[∇xG(t+ h− s, x, y) −∇xG(t+ h− s, x, y′)]dxds|2+

3|
∫ t

t−δ

∫

ρs(x)B(x, s)[∇xG(t+ h− s, x, y) −∇xG(t+ h− s, x, y′)]dxds|2.

From the upper bound of ∇yG(t, x, y) we derive

|
∫

ρp(x)[G(t− p+ h, x, y) −G(t− p + h, x, y′)]dx|

≤ |y − y′|
∫

ρp(x)|∇zG(t− p+ h, x, z)|dx ≤ c|y − y′|t− d+1

2

From the upper bound of ∂2
xiyj

G(t, x, y) and the estimate ||ρs||∞ ≤ c(1 +

t−d/2) ≤ c(1 + t−(d+1)/2) for all s ∈ (p, t) and for all t ∈ (0, T ], we have

∫ t−δ

p

∫

ρs(x)B(x, s)[∇xG(t + h− s, x, y) −∇xG(t+ h− s, x, y′)]dxds ≤

c|y − y′|(1 + t−(d+1)/2)

∫ t−δ

p

∫

(t− s)−1ds

12



≤ c|y − y′|(1 + t−(d+1)/2)[| ln(δ)| + 1]

It remains the term

|
∫ t

t−δ

∫

ρs(x)B(x, s)[∇xG(t+ h− s, x, y) −∇xG(t+ h− s, x, y′)]dxds| ≤

c

∫ t

t−δ

(t + h− s)−1/2(1 + t−d/2)ds ≤ c(1 + t−d/2)δ1/2

thanks to the upper bound of ∂xi
G(t, x, y). Finally we get

|
∫

ρt(x)G(h, x, y)dx−
∫

ρt(x)G(h, x, y′)dx|2

≤ c[|y − y′|2(1 + | ln(δ)|2) + δ](t−(d+1)/2 + 1)2

≤ c|y − y′|(t−(d+1)/2 + 1)2

because |y − y′| ≤ 1.
This estimate holds for any fixed t ∈ (0, T ] uniformly in h > 0, and

therefore is valid for the weak limit of the function y →
∫

ρt(x)G(h, y, x)dx,
as h→ 0, namely

|ρt(y) − ρt(y
′)| ≤ c|y − y′|1/2(t−(d+1)/2 + 1)

for |y− y′| ≤ 1. As |ρt(y)− ρt(y
′)| ≤ c(1 + t−(d+1)/2) for all y, y′, then we can

derive that
|ρt(y) − ρt(y

′)| ≤ c|y − y′|1/2(t−(d+1)/2 + 1)

for all y, y′.
We still have to establish (E3). For 0 < s < t, h = |t− s|4/5 we obtain

|ρt(y) − ρs(y)| ≤ |ρt(y) −
∫

ρt(x)G(h, x, y)dx|+

|
∫

[ρt(x) − ρs(x)]G(h, x, y)dx|+

|
∫

[ρs(x) − ρs(y)]G(h, x, y)dx| ≤ I1 + I2 + I3

The term

I1 = |
∫

[ρt(y)−ρt(x)]G(h, x, y)dx| ≤ c

∫

|y−x|1/2G(h, x, y)dx(t−(d+1)/2 +1)

c

∫

|y − x|1/2 1

hd/2
exp(−c2

|x− y|2
2h

)dx(t−(d+1)/2 + 1)
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≤ c(t−(d+1)/2 + 1)h1/4.

Similarly
I3 ≤ c(s−(d+1)/2 + 1)h1/4.

Furthermore

I2 = |
∫

[ρt(x) − ρs(x)]G(h, x, y)dx| = |
∫ t

s

∫

ρr(x)[B(x, r)∇xG(h, x, y)+

LG(h, x, y)]dxdr|
≤ c|t− s|(s−d/2 + 1)[(h)−1/2 + h−1] ≤ c|t− s|1/5(s−d/2 + 1)

4.2 Proof of uniqueness

We are going to give the uniqueness in any interval [0, T ]. The proof is
similar to the uniqueness in [4]. Let Xt = X0 +

∫ t

0
(E[v(X0) |Xs ]+b(Xs))ds+

∫ t

0
σ(Xs)Bt be a weak solution. We have already shown in Section 3 that

(ρ(x, t)dx = P (Xt ∈ dx), u(x, t) = E[v(X0) |Xt = x ])

is a weak solution of S(a, b). It is easy to show that

qi(x, t) := ui(x, t)ρ(x, t) =

∫

vi(y)ρ(0, y, t, x)ρ0(dy), (21)

where ρ(0, y, t, x) is the fundamental solution of

∂t(ρ) + div(ρu) = L∗(ρ).

Let q0(x, t) = q0(x, t,+) = q0(x, t,−) := ρ(x, t),

qi(x, t,+) =

∫

v+
i (y)ρ(0, y, t, x)ρ0(dy),

and

qi(x, t,−) =

∫

v−i (y)ρ(0, y, t, x)ρ0(dy) ∀ 1 ≤ i ≤ d,

where x+, x− denote respectively the positive and the negative parts of the
real number x.

Let ε = +,−, and 1
cε
i

=
∫

vε
i (y)ρ0(dy). We can show that for each couple

(i, ε), (t → cεi qi(x, t, ε) := m(x, t)) is a family of probability density on Rd

which is a weak solution of the parabolic equation

∂t(m) + div(mB) = L∗(m),
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where

B(x, t) =
1

q0(x, t)
(q1(x, t), ..., qd(x, t)).

It follows from Subsection 4.1 that there exists a constant c which depends
only on ||v||∞ and d such that for each i = 0, ..., d, ε = +,−

||qi(·, t, ε)||∞ ≤ c(t−d/2 + 1),

|qi(y, t, ε)− qi(y
′, t, ε)| ≤ c(t−(d+1)/2 + 1)|y − y′|1/2,

|qi(y, t, ε) − qi(y, s, ε)| ≤ c(min(t, s)−(d+1)/2 + 1)|t− s|1/5.

It also follows that

q = (q0(x, t), q1(x, t,+), q1(x, t−), ..., qd(x, t,+), qd(x, t,−)) :=

(qi(ε) : 0 ≤ i ≤ d, ε = +,−)

is a weak solution of the following 2d+ 1-dimensional parabolic system

P(2d+ 1)















∂t(qi(ε)) + div(qi(ε)F (q)) = L∗(qi(ε)),
∀ 0 ≤ i ≤ d, ε = +,−,
qi(ε, dx, t) → qi(ε, dx, 0)
weakly, as t→ 0+.

where

F (q) =
1

q0
(q1(+) − q1(−), ..., qd(+) − qd(−)).

We point out that each q → qi(ε)F (q) is Lipshitz continuous on the domain

D = {q ∈ R+ × R2d : |qi(+)| ≤ ||v||∞q0, |qi(−)| ≤ ||v||∞q0, ∀ 1 ≤ i ≤ d}.

In the sequel we denote |q| := q0 +
∑d

i=0 |qi(+)| + |qi(−)| the norm of the
vector q in R+ × R2d.

Now we are ready to prove the uniqueness by mimicking the method
of Oelschläger ([14], Proposition 3.5). Let us consider two weak solutions
(q1

i , 0 ≤ i ≤ d), (q2
i , 0 ≤ i ≤ d) of S(a, b) with the same initial conditions

(ρ0(dx), q0(dx)). We are going to show that

q1
0(x, t) = q2

0(x, t), q
1
i (x, t,+) = q2

i (x, t,+), q1
i (x, t,−) = q2

i (x, t,−) ∀ 1 ≤ i ≤ d.

From the system P(2d+ 1) we have for all f ∈ C2,1
b (Rd × [0, T ]), and for

i = 0, ..., d, j = 1, 2,
∫

f(x, t)qj
i (x, t,+)dx−

∫

f(x, 0)qj
i (dx, 0) =

15



∫ t

0

∫

[F (qj)∇f(x, s) + Lf(x, s) + ∂sf(x, s)]qj
i (x, s,+)dxds (22)

For any h > 0 the function γt+h−s(x) :=
∫

G(t + h − s, x, y)γ(y)dy is in

C2,1
b (Rd × [0, t]) for all γ ∈ L1(Rd). Therefore (22), and

∂sG(s, y, x) − LG(s, y, x) = 0, on Rd × (0,+∞), (23)

yields
|q1

i (y, t,+) − q2
i (y, t,+)| =

|
∫ t

0

∫

[F (q1(z, s))∇zG(t− s, z, y)q1
i (z, s,+)−

F (q2(z, s))∇zG(t− s, z, y)q2
i (z, s,+)]dzds|.

Now we multiply both sides of this equation with the function G(h, y, x), h >
0 and we integrate them. From this and from (23) we get the inequality

∫

|q1
i (y, t,+) − q2

i (y, t,+)|G(h, y, x)dy ≤

∫ t

0

∫ ∫

|F (q1(z, s))q1
i (z, s,+) − F (q2(z, s))q2

i (z, s,+)|

|∇zG(t− s, z, y)|G(h, y, x)dzdyds

≤ c

∫ t

0

∫ ∫

|q1(z, s) − q2(z, s)|(t− s)−1/2

G(2(t− s), z, y)G(h, y, x)dzdyds.

Noting that
∫

G(t, z, y)G(s, y, x)dy = G(t+ s, z, x)

It follows that
∫

|q1
i (y, t,+) − q2

i (y, t,+)|G(h, y, x)dy ≤

c

∫ t

0

∫

|q1(z, s) − q2(z, s)|(t− s)−1/2G(2(t− s) + h, z, x)dzds,

where c is some constant which depends on d, ||v||∞, T . The same estimates
show that for all 0 ≤ i ≤ d

∫

|q1
i (y, t,−) − q2

i (y, t,−)|G(h, y, x)dy ≤
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c

∫ t

0

∫

|q1(z, s) − q2(z, s)|(t− s)−1/2G(2(t− s) + h, z, x)dzds.

We derive that
∫

|q1(y, t) − q2(y, t)|G(h, y, x)dy ≤

c

∫ t

0

∫

|q1(z, s) − q2(z, s)|(t− s)−1/2G(2(t− s) + h, z, x)dzds,

this means with

Q(h, t, x) =

∫

|q1(y, t) − q2(y, t)|G(h, y, x)dy,

that

Q(h, t, x) ≤ c

∫ t

0

(t− s)−1/2Q(2(t− s) + h, s, x)ds. (24)

Now the proof goes as in ([14] page 305). For the sake of completeness
we recall it. From the estimate G(h, y, x) ≤ c

hd/2 we get a first estimate

Q(h, t, x) ≤ ch−d/2. (25)

Inserted into (24) gives uniformly in t ∈ (0, T ], x ∈ Rd

Q(h, t, x) ≤ c

∫ t

0

(t− s)−1/2(2(t− s) + h)−d/2ds

≤ c(h−(d−1)/2 + δ1
d| ln(h)| + 1). (26)

The latter estimate is an improvement of (25) and if we insert this improve-
ment into (24) we obtain uniformly in t ∈ (0, T ], x ∈ Rd

Q(h, t, x) ≤ c(h−(d−2)/2 + δ2
d| ln(h)| + 1).

Continuing in this way we finally obtain uniformly in t ∈ (0, T ], x ∈ Rd

Q(h, t, x) ≤ c

Since G(h, y, x) → δy(x) as h→ 0+, then

Q(h, t, x) → |q1(x, t) − q2(x, t)|

this yields
sup

x∈Rd,t∈(0,T ]

|q1(x, t) − q2(x, t)| < c. (27)
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Now recall that for each i,

|q1
i (y, t,+) − q2

i (y, t,+)| =

|
∫ t

0

∫

[F (q1(x, s))∇xG(t− s, x, y)q1
i (x, s,+)−

F (q2(x, s))∇xG(t− s, x, y)q2
i (x, s,+)]dxds|

≤ c

∫ t

0

sup
z∈Rd,s≤T

|q1(z, s) − q2(z, s)|(t− s)−1/2ds

≤ c sup
z∈Rd,s≤τ

|q1(z, s) − q2(z, s)|
√
τ

uniformly in t ∈ (0, τ ], y, τ ≤ T , and therefore

sup
z∈Rd,s≤τ

|q1(z, s) − q2(z, s)| ≤ c sup
z,s≤τ

|q1(z, s) − q2(z, s)|
√
τ

For τ < 1/c2 this yields by (27)

sup
z∈Rd,s≤τ

|q1(z, s) − q2(z, s)| = 0

Iterating of the above argument in [τ, 2τ ], etc. provides the desired result,
namely

sup
z∈Rd,s≤T

|q1(z, s) − q2(z, s)| = 0
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